Many researchers see a huge role for hydrogen in decarbonizing economies
The white-hot river of liquid iron never stops. Every hour of the day and night, at this steel plant in Sweden’s far north, the metal pours out of a hole at the bottom of a massive, 90-metre-tall blast furnace. Equally relentless, a stream of carbon dioxide belches out of the top.
Making steel green is just one of the ways that hydrogen is now expected to help decarbonize the world’s economy. Although some have touted hydrogen’s use as a transportation fuel, it’s unlikely to have much impact in that sector or in heating, for which batteries and electrical power already provide more efficient low-carbon solutions. Rather, hydrogen’s biggest contribution will be to clean up industrial processes, from producing plastics and fertilizers to refining hydrocarbons.
Partly as a result, investment in hydrogen projects is experiencing a boom. The Hydrogen Council, an industry group in Brussels, estimates that the hundreds of large-scale hydrogen projects announced already amount to a possible investment of US$240 billion by 2030 — although so far, only one-tenth of these are fully completed deals. By 2050, the council thinks the market for hydrogen and hydrogen technologies will be worth $2.5 trillion per year.
Where to begin? Hydrogen production is already a sizeable — and polluting — industry. The International Energy Agency estimates that around 94 million tonnes of the gas is made each year. Almost all of it comes from fossil fuels such as natural gas. Methane in natural gas reacts with oxygen to turn into hydrogen molecules and CO2.
Another way to make hydrogen can be almost completely carbon-free. This is the 200-year-old technique of water electrolysis: electrolysers extract the H from H2O by running an electric current between catalyst-plated electrodes. If the energy used to power this process is renewable, the resulting product is called green hydrogen. Green hydrogen has the potential to be zero-emission, or at least close to it.
Still, clean energy is growing at a remarkable pace. By 2024, for instance, BloombergNEF projects that the world is expected to have the capacity to produce almost 1 TW of photovoltaic panels each year: that alone could meet one-seventh of today’s annual electricity demand. Overall, the world’s low-emissions electricity supply is already set to more than triple by mid-century, says the IEA — although even more aggressive expansion is needed for a net-zero world in 2050 .
DRI existed long before HYBRIT started using hydrogen for this process: some of today’s steel is made this way using natural gas, but that leads to carbon emissions that using clean hydrogen would avoid. Many steel-makers are taking the DRI route, although in China and India, new blast furnaces are being planned, according to the non-governmental organization Global Energy Monitor, also in San Francisco. The task is so immense, however, that some organizations, including BloombergNEF, forecast that some blast furnaces will still be active at mid-century, and that carbon capture will have to be deployed to help reduce their emissions.
Researchers who work on simulations that try to balance supply and demand in future electric grids have to plan, for instance, how to supply electricity if winds aren’t blowing for a week in a cold, dark winter in Europe. Scientists have a name for this phenomenon: Dunkelflaute, a German word that roughly translates as ‘dark doldrums’.
Myths and misconceptions Although hydrogen has myriad possible applications, that doesn’t make it the best solution to all problems. For passenger cars, batteries have already largely won the race, because they are a more efficient and less costly solution than carrying around a tank of hydrogen and converting its energy back to electricity.
Hydrogen forecasts Investment in low-carbon hydrogen had been soaring for the past several years, but events this year have triggered what seems to be a veritable boom.
日本 最新ニュース, 日本 見出し
Similar News:他のニュース ソースから収集した、これに似たニュース記事を読むこともできます。
High-pressure synthesis of seven lanthanum hydrides with a significant variability of hydrogen content - Nature CommunicationsThe lanthanum-hydrogen system has attracted attention following the observation of superconductivity in LaH10 at near-ambient temperatures and high pressures. Here authors describe the high-pressure syntheses of seven La-H phases; they report crystal structures and remarkable regularities in rare-earth element hydrides.
続きを読む »
NREL Talks Solar Hydrogen Splitting Best Practices For EfficiencyInstead of using electricity, PEC uses energy directly from the sun to produce hydrogen, and thus leaves other renewable electricity sources available to power other things that are more efficient. This makes it one of the most promising and exciting ways to produce hydrogen.
続きを読む »
Hyperion unveils mobile hydrogen stations for XP-1 supercarThe Hyper:Fuel Mobile Stations will produce hydrogen through water electrolysis and get their electricity via built-in solar panels.
続きを読む »
The Crystal Structure of Carbonic AcidUbiquitous carbonic acid, H2CO3, a key molecule in biochemistry, geochemistry, and also extraterrestrial chemistry, is known from a plethora of physicochemical studies. Its crystal structure has now been determined from neutron-diffraction data on a deuterated sample in a specially built hybrid clamped cell. At 1.85 GPa, D2CO3 crystallizes in the monoclinic space group P21/c with a=5.392(2), b=6.661(4), c=5.690(1) Å, β=92.66(3)°, Z=4, with one symmetry-inequivalent anti-anti shaped D2CO3 molecule forming dimers, as previously predicted. Quantum chemistry evidences π bonding within the CO3 molecular core, very strong hydrogen bonding between the molecules, and a massive influence of the crystal field on all bonds; phonon calculations emphasize the locality of the vibrations, being rather insensitive to the extended structure.
続きを読む »
Direct Evidence of Photochemistry in an Exoplanet AtmospherePhotochemistry is a fundamental process of planetary atmospheres that is integral to habitability, atmospheric composition and stability, and aerosol formation. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Here we show that photochemically produced sulphur dioxide (SO$_2$) is present in the atmosphere of the hot, giant exoplanet WASP-39b, as constrained by data from the JWST Transiting Exoplanet Early Release Science Program and informed by a suite of photochemical models. We find that SO$_2$ is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H$_2$S) is destroyed. The SO$_2$ distribution computed by the photochemical models robustly explains the 4.05 $μ$m spectral feature seen in JWST transmission spectra [Rustamkulov et al.(submitted), Alderson et al.(submitted)] and leads to observable features at ultraviolet and thermal infrared wavelengths not available from the current observations. The sensitivity of the SO$_2$ feature to the enrichment of heavy elements in the atmosphere ('metallicity') suggests that it can be used as a powerful tracer of atmospheric properties, with our results implying a metallicity of $\sim$10$\times$ solar for WASP-39b. Through providing improved constraints on bulk metallicity and sulphur abundance, the detection of SO$_2$ opens a new avenue for the investigation of giant-planet formation. Our work demonstrates that sulphur photochemistry may be readily observable for exoplanets with super-solar metallicity and equilibrium temperatures $\gtrsim$750 K. The confirmation of photochemistry through the agreement between theoretical predictions and observational data is pivotal for further atmospheric characterisation studies.
続きを読む »